

Mechanical Propertie		B (GPa)	G (GPa)	Y (GPa)	ρ (kg/m ³)
Meenamear ropertie	S	27.2	17.0	42.1	1424
	Ti	27.6	17.7	43.8	1491
	V	27.7	19.1	46.5	1539
	Cr	27.3	19.5	47.2	1565
	Mn	27.3	20.2	48.6	1593
 Can show that … 	Fe	27.3	19.8	47.8	1607
	Co	27.2	19.4	47.0	1627
	Ni	27.8	19.9	48.2	1607
	Cu	26.8	20.4	48.8	1936
V	Zn	26.7	20.3	48.7	1989
$G = \frac{Y}{1}$	Na	23.3	15.0	37.0	1255
$0 = \frac{1}{2(1+m)}$	Al	27.4	20.7	49.7	1539
2(1+V)	Si	27.7	20.9	50.1	1589
	Р	28.1	15.9	40.1	1462
\sim	S	27.1	12.7	32.9	1439
V Y	C1	24.3	8.4	22.6	1384
$K = \frac{1}{3(1-2\nu)}$					
∴ can	characteriz	ze ela	stic r	egim	e of
an	naterial wit	h fou	. വ്വാദ്വ	ntities	
	a material with four quantities.				
	<i>Y</i> , <i>G</i> , <i>K</i> , and <i>α</i>				

Typical values of Young's modulus, Y, the modulus of rigidity, G,
the bulk modulus, K , and Poisson's ratio, v , for a selection of solids.

	Y (10 ⁹ N/m ²)	G (10 ⁹ N/m ²)	K (10 ⁹ N/m ²)	v
Diamond	950	390	540	0.21
Al	70	24	72	0.33
Cu	130	48	140	0.35
Fe	120	70	170	0.17
Pb	15	6	43	0.40
W	350	150	320	0.28
Brass	100	37	110	0.35
Glass	75	23	41	0.22
Steel	210	84	170	0.29

Mechanical Properties

- Role of dislocations
- Lower values of modulii

Mechanical Properties

- Microscopic scale: edge
 dislocation
- Propagates through material with applied shear stress
- small force required to move dislocation along **S**, the slip plane
- So, don't have to move entire plane above and below S to get deformation! Thus, yield stress is lowered.
- Helps explain *plastic* deformation regime

	Mode	ling a Solid	
 There a through We can quantur The latt (periodi 	re many types a lattice as ele model a solid i n mechanically ice symmetry (p city) in any way	of waves that can propagate mentary excitations in various ways, classically periodicity) induces a symm ve propagating through the l	e and etry attice.
	Name	Field	
	Electron	-	
	Photon	Electromagnetic wave	
	Phonon	Elastic wave	
	Plasmon	Collective electron wave	
	Magnon	Magnetization wave	
	Polaron	Electron + elastic deformation	
	Exciton	Polarization wave	

